
【必备】数学教学计划模板汇编8篇
时间的脚步是无声的,它在不经意间流逝,我们的教学工作又将翻开新的一页,请一起努力,写一份教学计划吧。教学计划怎么写才能切实地帮助到自己将来的工作呢?下面是小编整理的数学教学计划9篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学教学计划 篇1数学教学计划八年级新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:
一、学情分析
本学期我继续担任初二的数学教学工作。这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。
二、教学措施
1、认真研读新课程标准,钻研教材,努力构建和谐课堂教学模式,提高教学的实效性与有效性
2、根据教学内容,精心设计数学活动,培养学生探究合作能力,通过变式训练,培养思维的灵活性。特别是函数一章,利用数形结合,努力培养学生数学建模的思想和能力,
3、仔细批改作业,作好辅导,及时查缺补漏。
4、成立一帮一互助学习小组,辅导后进生,同时促进优生,共同进步。
三、合理落实各项教学常规
1、备好课是上好课的基础,是提高课堂教学质量的关键,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,备好三环六步的各个环节。
2、上课时定向要明确,在充分了解学情的基础上,引导学生弄清疑难。点难拨疑时要面向全体学生,使各类学生都学有所得。都有所发展。
3、作业布置要分层,以关注不同层次的学生。批改要认真、及时,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。
4、进行个别辅导,优生提升能力,扎实打牢基础知识;
四、教研工作
积极参加教科室和教研组组织的各项教研活动。结合学校的双思三环六步讨论怎样优化三环六步教学设计,不断提高课堂教学效率,进行交流体会。在上好每一节课的基础上,及时写出教学反思并及时发布。通过教研不断创新自己的教育理念,提高自己的业务水平。
数学教学计划 篇2一、班级学生概况:
通过两年的学习,学生已掌握了基本的计算技巧,具备初步的理解、分析、解决问题的能力,并养成了良好的学习习惯。部分学生在学习过程中尚缺少主动与同学交流的习惯。借读生中,由于学习环境不稳定、缺乏良好的家庭教育、生活贫困等种种原因,造成了部分借读生数学素质相对低下,学习习惯较差,学习不够自觉等状况。本期重点培养学生的合作意识和能力;提高学生提出问题、分析问题、解决问题的能力。同时继续培养学生的学习习惯。
二、教材分析:
这一册教材包括下面一些内容:测量、万以内的加法和减法笔算(二),四边形,有余数的除法,时、分、秒,多位数乘一位数,分数的初步认识,可能性,数学广角等。
万以内的加法和减法笔算、多位数乘一位数以及四边形是本册教材的重点教学内容。
在数与计算方面,这一册教材安排了万以内的加法和减法笔算、多位数乘一位数、有余数的除法以及分数的初步认识。万以内的加法和减法笔算是小学生应该掌握和形成的基础知识和基本技能,也是进一步学习多位数笔算乘、除法的基础。例如,两位数的乘法中要把两个部分积加起来,实际是计算三、四位数的加法,两位数除法中每次试商后通常要做三位数减法。同样,多位数乘一位数也是学习两、三位数乘法的基础,因为不论因数是几位数,在计算过程中都要分解成用几个多位数乘一位数。有余数的除法是表内除法学习的继续,也是学习多位数除法的基础。
分数的初步认识是数概念教学的一次扩展,学生理解掌握会有一定的难度,所以本册出现的内容是最初步的,结合学生的生活实际和具体实例使学生理解一些简单分数的具体含义,给学生建立分数的初步概念,初步学会用简单的分数进行表达和交流,进一步发展数感,并为学习小数和进一步学习分数做好铺垫。
在空间与图形方面,这一册教材安排了四边形一单元,这是教材的另一个重点内容。通过这部分内容的学习,让学生认识平行四边形,掌握认识长方形和正方形的特征,了解周长的含义,学会计算长方形和正方形的周长等。同时使学生通过直观、操作,进一步感知平面图形之间的关系,促进空间观念的发展。
在量的计量方面,这一册安排的是认识长度单位千米、质量单位吨以及时间单位分、秒。这些内容的教学可以进一步发展学生的质量观念和时间观念,并通过实际操作与具体体验,培养学生估量物体质量和时间长短的意识。
在统计知识方面,本册教材让学生初步学习可能性。通过对周围现实生活中有关事例的感受和体验以及实际活动,使学生了解现实生活中存在着不确定现象,知道事件发生的可能性是有大小的,激发学生探索生活中的数学的兴趣,培养学生应用意识和实践能力。
本册教材安排了“数学广角”的教学内容,继续引导学生通过观察、猜测、实验、推理等活动找出事物简单的排列数和组合数,培养学生观察、操作及归纳推理的能力。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
三、教学目标要求:
1、会笔算三位数的加、减法,会进行相应的估算和验算。
2、会口算一位数乘整十、整百数;会笔算一位数乘二、三位数,并会进行估算;能熟练地计算除数和商是一位数的有余数的除法。
3、初步认识简单的分数(分母小于10),会读、写分数并知道各部分的名称,初步认识分数的大小,会计算简单的同分母分数的加减法。
4、初步认识平行四边形,掌握长方形和正方形的特征,会在方格纸上画长方形、正方形和平行四边形;知道周长的含义,会计算长方形、正方形的周长;能估计一些物体的长度,并会进行测量。
5、认识长度单位千米,初步建立1千米的长度观念,知道1千米=1000米;认识质量单位吨,初步建立1吨的质量观念,知道1吨=1000千克;认识时间单位秒,初步建立分、秒的时间观念,知道1分=60秒,会进行一些有关时间的简单计算。
6、初步体验有些事件的发生是确定的,有些则是不确定的;能够列出简单实验所有可能发生的结果,知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出描述。
7、能找出事物简单的排列数和组合数,形成发现生活中的数学的 ……此处隐藏7630个字……1、认真备好课,夯实基础知识,确保每一个学生扎实掌握新知,巩固旧知。对学习有困难的学生,要多给关注,多给发言机会,激发其参与热情。
2、在课堂教学中确保双基的基础上,注意适时发展优生的思维,培养优生的能力,从而也带动中差生的发展。培优主要体现在以下三个途径上:
(1)、在每堂课的新知教学后,安排适量发展练习题。
(2)、在课堂教学的各个环节中,每个知识点上,适时引导,相机点拨,给学生“摘桃”的机会。
(3)、利用每周的思维训练时间,激发学生的数学学习热情,组织愉快的思维训练。
六、减负提质措施:
1、钻研好《新课标》,精心备好课,确保课堂教学质量。
2、教学任务在课内完成,课外尽量不留作业,或只留兴趣性、发展性作业。
3、对学生的要求要合理,充分肯定每一个学生的优点,不用一个刻度要求每一个学生,作业布置分层进行,避免部分学生过重的作业负担和心理负担。
七、教学进度安排:( 附后)
四年级下册教学进度安排
数学教学计划 篇8【学习目标】
1.了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定
【学习过程】
一、
知识回顾
1.什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________
二、
探究新知[一]
1.一元二次方程的一般形式是( )
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2).方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?
3).强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.
探究新知(二)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[学以致用:]
强化概念:
1. 说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知识总结:]
(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );
(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.如:(3x十2) 2=4(x-3)____________
诊断检测题一:
1.一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项.
2.方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.
3.方程mx2+5x+n=0一定是( ).
A.一元二次方程 B.一元一次方程
C.整式方程 D.关于x的一元二次方程
4.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )
A.任意实数 B. m≠-1 C. m>1 D. m>0
5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6.把下列方程化成一般形式,且指出其二次项,一次项和常数项
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
诊断检测题二:
1.方程 的二次项系数是 ,一次项系数是 ,常数项是 .
2.把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;
3.一元二次方程 的一个根是3,则 ;
4. 是实数,且 ,则 的值是 .
5.关于 的方程 是一元二次方程,则 .
6.方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③