当前位置:首页 > 教育范文 > 教学反思

五年级方程教学反思

时间:2025-09-04 13:06:39
五年级方程教学反思

五年级方程教学反思

作为一位刚到岗的教师,我们要有很强的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,那么你有了解过教学反思吗?下面是小编精心整理的五年级方程教学反思,仅供参考,大家一起来看看吧。

五年级方程教学反思1

本课是以天平为形象支撑,结合了具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。

由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3 + 2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的`符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3 + 2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。

方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20 - 12 = x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。

五年级方程教学反思2

新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,在小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立。从学生的学习上来看,我觉得学生是比较容易接受这种方法的,特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,因此本节课把握好教学目标是关键,

其目标有三:

1.结合现实情景了解方程的意义,

2.会用方程表示简单的等量关系,

3.感受数学的应用价值。本节课内容新,知识抽象,练习多,因此要精讲,才能完成教学目标。

经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的.格式上的问题是比较好纠正的`,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我先让学生复习,巩固找出题目中等量关系式的本领和方法,并且让他们学会举一反三,这点相当重要。还有一点需特别注意学生列出的方程,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,我觉得如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。

在练习中,我把练习的重点放在找准数量关系式上。课堂上大量提问了学生应用题的数量关系式是什么,进一步进行了专项训练,在进行列方程解应用题时,重点让学困生再说说关键句是什么,是根据哪句话找出来的,(让学生找关键句)要让他们知道怎样去找,从而总结找相等的数量关系可以有这样几种策略:

①根据关键句思考等量关系。

②根据公式思考等量关系。

③根据总数思考等量关系。

④根据相差数思考等量关系。

五年级方程教学反思3

教材分析

本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。

1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。

2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的'。

3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。

学情分析

本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。

  教学目标

1.能利用天平,通过动手操作理解等式的意义。

2.结合具体实例和情景,初步理解方程的意义,会用方程表

达简单的等量关系。

3.培养保护动物的意识,感受数学与生活的密切联系,提高

学习数学的兴趣。

教学重点和难点

重点:方程意义的理解 难点:建立等式、方程的概念

教学过程

五年级方程教学反思4

《认识方程》是学生学习代数初步知识的开始。教材运用丰富的问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义。

《认识方程》是在学生学会用字母表示数的基础上进行教学的。通过本课的教学,要使学生了解方程的含义,会用方程表示简单的数量关系。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的`实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。

介于以上认识我对本课进行了一些设计,通过教学感觉比较成功的有以下几点做法。

一、“巩固复习,铺垫新知”这一部分通过填空和分类,让学生了解“等式、不等式、代数式”等概念,为后面区分方程和等式做一个铺垫。

1、填空:3.6+2.1○7.7-21.6×5○5×1.638.4×0.2○38.45.9÷0.1○5.9

t与8的和:b除42的商:< ……此处隐藏6470个字……学习方程解法,也就是利用等式的基本性质来解方程。举个例子:

旧教材:

x+48=127

x=127-48

依据运算之间的关系:一个加数等于和减另一个加数。

新教材:

x+48=127

x+48-48=127-48

依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。

可是,当学到用方程解决实际问题时,却出现了状况。

新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。

如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的'数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。

我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。

如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”

合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。

如此一来,学生怎么能充分体会方程顺向思维的优越性?

如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?

我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。

五年级方程教学反思14

小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的'性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。 通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:

1、教材的编排上,整体难度下降,有意避开了,形如:45—X=23 56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。

2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。

总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。

五年级方程教学反思15

“含有未知数的等式是方程”,这句话中包括两个条件,一个是”含有求知数”一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。所以在本节课的教学中,就要围绕着这两处条件,设计教学。

一、创设情境,在实际天平的操作中等到等式,并在实际操作中得到方程。

为了加深学生对等式的理解和掌握,采用教科书的'设计意图和设计,用天平的平衡找到两边物体质量相等,从而得到等式。为了让我们的设计更贴近我们的生活,直接用我们的粉笔列道具,来称粉笔的重量的过程中得到不等式和等式,含有求知数的等式(方程)。一步一步,让学生从浅到深,一点一点掌握知识,得到要掌握的知识点。从而学会判断哪些是方程,哪些不是方程。

二、通过比较和断定,从而加深对方程的理解。

断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。

X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。

三、在观察天平平衡列式过程中建立方程的概念,不仅要了解方程的外在特点,更要理解方程的意义。

从判断等式方程到借助现实的相等情境写出方程,由表及里,由浅入深。学生在把实际问题的等量关系用符号化抽象成方程时,不仅感受了方程与日常生活的联系,也体会了方程的本质特征,从而巩固了方程的概念。

《五年级方程教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式